You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
381 lines
12 KiB
381 lines
12 KiB
from copy import deepcopy
|
|
import inspect
|
|
import pydoc
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas._config.config import option_context
|
|
|
|
from pandas.util._test_decorators import async_mark
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
Series,
|
|
date_range,
|
|
timedelta_range,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestDataFrameMisc:
|
|
def test_getitem_pop_assign_name(self, float_frame):
|
|
s = float_frame["A"]
|
|
assert s.name == "A"
|
|
|
|
s = float_frame.pop("A")
|
|
assert s.name == "A"
|
|
|
|
s = float_frame.loc[:, "B"]
|
|
assert s.name == "B"
|
|
|
|
s2 = s.loc[:]
|
|
assert s2.name == "B"
|
|
|
|
def test_get_axis(self, float_frame):
|
|
f = float_frame
|
|
assert f._get_axis_number(0) == 0
|
|
assert f._get_axis_number(1) == 1
|
|
assert f._get_axis_number("index") == 0
|
|
assert f._get_axis_number("rows") == 0
|
|
assert f._get_axis_number("columns") == 1
|
|
|
|
assert f._get_axis_name(0) == "index"
|
|
assert f._get_axis_name(1) == "columns"
|
|
assert f._get_axis_name("index") == "index"
|
|
assert f._get_axis_name("rows") == "index"
|
|
assert f._get_axis_name("columns") == "columns"
|
|
|
|
assert f._get_axis(0) is f.index
|
|
assert f._get_axis(1) is f.columns
|
|
|
|
with pytest.raises(ValueError, match="No axis named"):
|
|
f._get_axis_number(2)
|
|
|
|
with pytest.raises(ValueError, match="No axis.*foo"):
|
|
f._get_axis_name("foo")
|
|
|
|
with pytest.raises(ValueError, match="No axis.*None"):
|
|
f._get_axis_name(None)
|
|
|
|
with pytest.raises(ValueError, match="No axis named"):
|
|
f._get_axis_number(None)
|
|
|
|
def test_column_contains_raises(self, float_frame):
|
|
with pytest.raises(TypeError, match="unhashable type: 'Index'"):
|
|
float_frame.columns in float_frame
|
|
|
|
def test_tab_completion(self):
|
|
# DataFrame whose columns are identifiers shall have them in __dir__.
|
|
df = DataFrame([list("abcd"), list("efgh")], columns=list("ABCD"))
|
|
for key in list("ABCD"):
|
|
assert key in dir(df)
|
|
assert isinstance(df.__getitem__("A"), Series)
|
|
|
|
# DataFrame whose first-level columns are identifiers shall have
|
|
# them in __dir__.
|
|
df = DataFrame(
|
|
[list("abcd"), list("efgh")],
|
|
columns=pd.MultiIndex.from_tuples(list(zip("ABCD", "EFGH"))),
|
|
)
|
|
for key in list("ABCD"):
|
|
assert key in dir(df)
|
|
for key in list("EFGH"):
|
|
assert key not in dir(df)
|
|
assert isinstance(df.__getitem__("A"), DataFrame)
|
|
|
|
def test_display_max_dir_items(self):
|
|
# display.max_dir_items increaes the number of columns that are in __dir__.
|
|
columns = ["a" + str(i) for i in range(420)]
|
|
values = [range(420), range(420)]
|
|
df = DataFrame(values, columns=columns)
|
|
|
|
# The default value for display.max_dir_items is 100
|
|
assert "a99" in dir(df)
|
|
assert "a100" not in dir(df)
|
|
|
|
with option_context("display.max_dir_items", 300):
|
|
df = DataFrame(values, columns=columns)
|
|
assert "a299" in dir(df)
|
|
assert "a300" not in dir(df)
|
|
|
|
with option_context("display.max_dir_items", None):
|
|
df = DataFrame(values, columns=columns)
|
|
assert "a419" in dir(df)
|
|
|
|
def test_not_hashable(self):
|
|
empty_frame = DataFrame()
|
|
|
|
df = DataFrame([1])
|
|
msg = "unhashable type: 'DataFrame'"
|
|
with pytest.raises(TypeError, match=msg):
|
|
hash(df)
|
|
with pytest.raises(TypeError, match=msg):
|
|
hash(empty_frame)
|
|
|
|
def test_column_name_contains_unicode_surrogate(self):
|
|
# GH 25509
|
|
colname = "\ud83d"
|
|
df = DataFrame({colname: []})
|
|
# this should not crash
|
|
assert colname not in dir(df)
|
|
assert df.columns[0] == colname
|
|
|
|
def test_new_empty_index(self):
|
|
df1 = DataFrame(np.random.default_rng(2).standard_normal((0, 3)))
|
|
df2 = DataFrame(np.random.default_rng(2).standard_normal((0, 3)))
|
|
df1.index.name = "foo"
|
|
assert df2.index.name is None
|
|
|
|
def test_get_agg_axis(self, float_frame):
|
|
cols = float_frame._get_agg_axis(0)
|
|
assert cols is float_frame.columns
|
|
|
|
idx = float_frame._get_agg_axis(1)
|
|
assert idx is float_frame.index
|
|
|
|
msg = r"Axis must be 0 or 1 \(got 2\)"
|
|
with pytest.raises(ValueError, match=msg):
|
|
float_frame._get_agg_axis(2)
|
|
|
|
def test_empty(self, float_frame, float_string_frame):
|
|
empty_frame = DataFrame()
|
|
assert empty_frame.empty
|
|
|
|
assert not float_frame.empty
|
|
assert not float_string_frame.empty
|
|
|
|
# corner case
|
|
df = DataFrame({"A": [1.0, 2.0, 3.0], "B": ["a", "b", "c"]}, index=np.arange(3))
|
|
del df["A"]
|
|
assert not df.empty
|
|
|
|
def test_len(self, float_frame):
|
|
assert len(float_frame) == len(float_frame.index)
|
|
|
|
# single block corner case
|
|
arr = float_frame[["A", "B"]].values
|
|
expected = float_frame.reindex(columns=["A", "B"]).values
|
|
tm.assert_almost_equal(arr, expected)
|
|
|
|
def test_axis_aliases(self, float_frame):
|
|
f = float_frame
|
|
|
|
# reg name
|
|
expected = f.sum(axis=0)
|
|
result = f.sum(axis="index")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
expected = f.sum(axis=1)
|
|
result = f.sum(axis="columns")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_class_axis(self):
|
|
# GH 18147
|
|
# no exception and no empty docstring
|
|
assert pydoc.getdoc(DataFrame.index)
|
|
assert pydoc.getdoc(DataFrame.columns)
|
|
|
|
def test_series_put_names(self, float_string_frame):
|
|
series = float_string_frame._series
|
|
for k, v in series.items():
|
|
assert v.name == k
|
|
|
|
def test_empty_nonzero(self):
|
|
df = DataFrame([1, 2, 3])
|
|
assert not df.empty
|
|
df = DataFrame(index=[1], columns=[1])
|
|
assert not df.empty
|
|
df = DataFrame(index=["a", "b"], columns=["c", "d"]).dropna()
|
|
assert df.empty
|
|
assert df.T.empty
|
|
|
|
@pytest.mark.parametrize(
|
|
"df",
|
|
[
|
|
DataFrame(),
|
|
DataFrame(index=[1]),
|
|
DataFrame(columns=[1]),
|
|
DataFrame({1: []}),
|
|
],
|
|
)
|
|
def test_empty_like(self, df):
|
|
assert df.empty
|
|
assert df.T.empty
|
|
|
|
def test_with_datetimelikes(self):
|
|
df = DataFrame(
|
|
{
|
|
"A": date_range("20130101", periods=10),
|
|
"B": timedelta_range("1 day", periods=10),
|
|
}
|
|
)
|
|
t = df.T
|
|
|
|
result = t.dtypes.value_counts()
|
|
expected = Series({np.dtype("object"): 10}, name="count")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_deepcopy(self, float_frame):
|
|
cp = deepcopy(float_frame)
|
|
series = cp["A"]
|
|
series[:] = 10
|
|
for idx, value in series.items():
|
|
assert float_frame["A"][idx] != value
|
|
|
|
def test_inplace_return_self(self):
|
|
# GH 1893
|
|
|
|
data = DataFrame(
|
|
{"a": ["foo", "bar", "baz", "qux"], "b": [0, 0, 1, 1], "c": [1, 2, 3, 4]}
|
|
)
|
|
|
|
def _check_f(base, f):
|
|
result = f(base)
|
|
assert result is None
|
|
|
|
# -----DataFrame-----
|
|
|
|
# set_index
|
|
f = lambda x: x.set_index("a", inplace=True)
|
|
_check_f(data.copy(), f)
|
|
|
|
# reset_index
|
|
f = lambda x: x.reset_index(inplace=True)
|
|
_check_f(data.set_index("a"), f)
|
|
|
|
# drop_duplicates
|
|
f = lambda x: x.drop_duplicates(inplace=True)
|
|
_check_f(data.copy(), f)
|
|
|
|
# sort
|
|
f = lambda x: x.sort_values("b", inplace=True)
|
|
_check_f(data.copy(), f)
|
|
|
|
# sort_index
|
|
f = lambda x: x.sort_index(inplace=True)
|
|
_check_f(data.copy(), f)
|
|
|
|
# fillna
|
|
f = lambda x: x.fillna(0, inplace=True)
|
|
_check_f(data.copy(), f)
|
|
|
|
# replace
|
|
f = lambda x: x.replace(1, 0, inplace=True)
|
|
_check_f(data.copy(), f)
|
|
|
|
# rename
|
|
f = lambda x: x.rename({1: "foo"}, inplace=True)
|
|
_check_f(data.copy(), f)
|
|
|
|
# -----Series-----
|
|
d = data.copy()["c"]
|
|
|
|
# reset_index
|
|
f = lambda x: x.reset_index(inplace=True, drop=True)
|
|
_check_f(data.set_index("a")["c"], f)
|
|
|
|
# fillna
|
|
f = lambda x: x.fillna(0, inplace=True)
|
|
_check_f(d.copy(), f)
|
|
|
|
# replace
|
|
f = lambda x: x.replace(1, 0, inplace=True)
|
|
_check_f(d.copy(), f)
|
|
|
|
# rename
|
|
f = lambda x: x.rename({1: "foo"}, inplace=True)
|
|
_check_f(d.copy(), f)
|
|
|
|
@async_mark()
|
|
async def test_tab_complete_warning(self, ip, frame_or_series):
|
|
# GH 16409
|
|
pytest.importorskip("IPython", minversion="6.0.0")
|
|
from IPython.core.completer import provisionalcompleter
|
|
|
|
if frame_or_series is DataFrame:
|
|
code = "from pandas import DataFrame; obj = DataFrame()"
|
|
else:
|
|
code = "from pandas import Series; obj = Series(dtype=object)"
|
|
|
|
await ip.run_code(code)
|
|
|
|
# GH 31324 newer jedi version raises Deprecation warning;
|
|
# appears resolved 2021-02-02
|
|
with tm.assert_produces_warning(None, raise_on_extra_warnings=False):
|
|
with provisionalcompleter("ignore"):
|
|
list(ip.Completer.completions("obj.", 1))
|
|
|
|
def test_attrs(self):
|
|
df = DataFrame({"A": [2, 3]})
|
|
assert df.attrs == {}
|
|
df.attrs["version"] = 1
|
|
|
|
result = df.rename(columns=str)
|
|
assert result.attrs == {"version": 1}
|
|
|
|
@pytest.mark.parametrize("allows_duplicate_labels", [True, False, None])
|
|
def test_set_flags(
|
|
self, allows_duplicate_labels, frame_or_series, using_copy_on_write
|
|
):
|
|
obj = DataFrame({"A": [1, 2]})
|
|
key = (0, 0)
|
|
if frame_or_series is Series:
|
|
obj = obj["A"]
|
|
key = 0
|
|
|
|
result = obj.set_flags(allows_duplicate_labels=allows_duplicate_labels)
|
|
|
|
if allows_duplicate_labels is None:
|
|
# We don't update when it's not provided
|
|
assert result.flags.allows_duplicate_labels is True
|
|
else:
|
|
assert result.flags.allows_duplicate_labels is allows_duplicate_labels
|
|
|
|
# We made a copy
|
|
assert obj is not result
|
|
|
|
# We didn't mutate obj
|
|
assert obj.flags.allows_duplicate_labels is True
|
|
|
|
# But we didn't copy data
|
|
if frame_or_series is Series:
|
|
assert np.may_share_memory(obj.values, result.values)
|
|
else:
|
|
assert np.may_share_memory(obj["A"].values, result["A"].values)
|
|
|
|
result.iloc[key] = 0
|
|
if using_copy_on_write:
|
|
assert obj.iloc[key] == 1
|
|
else:
|
|
assert obj.iloc[key] == 0
|
|
# set back to 1 for test below
|
|
result.iloc[key] = 1
|
|
|
|
# Now we do copy.
|
|
result = obj.set_flags(
|
|
copy=True, allows_duplicate_labels=allows_duplicate_labels
|
|
)
|
|
result.iloc[key] = 10
|
|
assert obj.iloc[key] == 1
|
|
|
|
def test_constructor_expanddim(self):
|
|
# GH#33628 accessing _constructor_expanddim should not raise NotImplementedError
|
|
# GH38782 pandas has no container higher than DataFrame (two-dim), so
|
|
# DataFrame._constructor_expand_dim, doesn't make sense, so is removed.
|
|
df = DataFrame()
|
|
|
|
msg = "'DataFrame' object has no attribute '_constructor_expanddim'"
|
|
with pytest.raises(AttributeError, match=msg):
|
|
df._constructor_expanddim(np.arange(27).reshape(3, 3, 3))
|
|
|
|
def test_inspect_getmembers(self):
|
|
# GH38740
|
|
pytest.importorskip("jinja2")
|
|
df = DataFrame()
|
|
msg = "DataFrame._data is deprecated"
|
|
with tm.assert_produces_warning(
|
|
DeprecationWarning, match=msg, check_stacklevel=False
|
|
):
|
|
inspect.getmembers(df)
|
|
|