Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

194 lines
6.1 KiB

from decimal import Decimal
import numpy as np
import pytest
from pandas.compat.numpy import np_version_gte1p25
import pandas as pd
import pandas._testing as tm
class TestDataFrameUnaryOperators:
# __pos__, __neg__, __invert__
@pytest.mark.parametrize(
"df,expected",
[
(pd.DataFrame({"a": [-1, 1]}), pd.DataFrame({"a": [1, -1]})),
(pd.DataFrame({"a": [False, True]}), pd.DataFrame({"a": [True, False]})),
(
pd.DataFrame({"a": pd.Series(pd.to_timedelta([-1, 1]))}),
pd.DataFrame({"a": pd.Series(pd.to_timedelta([1, -1]))}),
),
],
)
def test_neg_numeric(self, df, expected):
tm.assert_frame_equal(-df, expected)
tm.assert_series_equal(-df["a"], expected["a"])
@pytest.mark.parametrize(
"df, expected",
[
(np.array([1, 2], dtype=object), np.array([-1, -2], dtype=object)),
([Decimal("1.0"), Decimal("2.0")], [Decimal("-1.0"), Decimal("-2.0")]),
],
)
def test_neg_object(self, df, expected):
# GH#21380
df = pd.DataFrame({"a": df})
expected = pd.DataFrame({"a": expected})
tm.assert_frame_equal(-df, expected)
tm.assert_series_equal(-df["a"], expected["a"])
@pytest.mark.parametrize(
"df",
[
pd.DataFrame({"a": ["a", "b"]}),
pd.DataFrame({"a": pd.to_datetime(["2017-01-22", "1970-01-01"])}),
],
)
def test_neg_raises(self, df):
msg = (
"bad operand type for unary -: 'str'|"
r"bad operand type for unary -: 'DatetimeArray'"
)
with pytest.raises(TypeError, match=msg):
(-df)
with pytest.raises(TypeError, match=msg):
(-df["a"])
def test_invert(self, float_frame):
df = float_frame
tm.assert_frame_equal(-(df < 0), ~(df < 0))
def test_invert_mixed(self):
shape = (10, 5)
df = pd.concat(
[
pd.DataFrame(np.zeros(shape, dtype="bool")),
pd.DataFrame(np.zeros(shape, dtype=int)),
],
axis=1,
ignore_index=True,
)
result = ~df
expected = pd.concat(
[
pd.DataFrame(np.ones(shape, dtype="bool")),
pd.DataFrame(-np.ones(shape, dtype=int)),
],
axis=1,
ignore_index=True,
)
tm.assert_frame_equal(result, expected)
def test_invert_empty_not_input(self):
# GH#51032
df = pd.DataFrame()
result = ~df
tm.assert_frame_equal(df, result)
assert df is not result
@pytest.mark.parametrize(
"df",
[
pd.DataFrame({"a": [-1, 1]}),
pd.DataFrame({"a": [False, True]}),
pd.DataFrame({"a": pd.Series(pd.to_timedelta([-1, 1]))}),
],
)
def test_pos_numeric(self, df):
# GH#16073
tm.assert_frame_equal(+df, df)
tm.assert_series_equal(+df["a"], df["a"])
@pytest.mark.parametrize(
"df",
[
pd.DataFrame({"a": np.array([-1, 2], dtype=object)}),
pd.DataFrame({"a": [Decimal("-1.0"), Decimal("2.0")]}),
],
)
def test_pos_object(self, df):
# GH#21380
tm.assert_frame_equal(+df, df)
tm.assert_series_equal(+df["a"], df["a"])
@pytest.mark.parametrize(
"df",
[
pytest.param(
pd.DataFrame({"a": ["a", "b"]}),
# filterwarnings removable once min numpy version is 1.25
marks=[
pytest.mark.filterwarnings("ignore:Applying:DeprecationWarning")
],
),
],
)
def test_pos_object_raises(self, df):
# GH#21380
if np_version_gte1p25:
with pytest.raises(
TypeError, match=r"^bad operand type for unary \+: \'str\'$"
):
tm.assert_frame_equal(+df, df)
else:
tm.assert_series_equal(+df["a"], df["a"])
@pytest.mark.parametrize(
"df", [pd.DataFrame({"a": pd.to_datetime(["2017-01-22", "1970-01-01"])})]
)
def test_pos_raises(self, df):
msg = r"bad operand type for unary \+: 'DatetimeArray'"
with pytest.raises(TypeError, match=msg):
(+df)
with pytest.raises(TypeError, match=msg):
(+df["a"])
def test_unary_nullable(self):
df = pd.DataFrame(
{
"a": pd.array([1, -2, 3, pd.NA], dtype="Int64"),
"b": pd.array([4.0, -5.0, 6.0, pd.NA], dtype="Float32"),
"c": pd.array([True, False, False, pd.NA], dtype="boolean"),
# include numpy bool to make sure bool-vs-boolean behavior
# is consistent in non-NA locations
"d": np.array([True, False, False, True]),
}
)
result = +df
res_ufunc = np.positive(df)
expected = df
# TODO: assert that we have copies?
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(res_ufunc, expected)
result = -df
res_ufunc = np.negative(df)
expected = pd.DataFrame(
{
"a": pd.array([-1, 2, -3, pd.NA], dtype="Int64"),
"b": pd.array([-4.0, 5.0, -6.0, pd.NA], dtype="Float32"),
"c": pd.array([False, True, True, pd.NA], dtype="boolean"),
"d": np.array([False, True, True, False]),
}
)
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(res_ufunc, expected)
result = abs(df)
res_ufunc = np.abs(df)
expected = pd.DataFrame(
{
"a": pd.array([1, 2, 3, pd.NA], dtype="Int64"),
"b": pd.array([4.0, 5.0, 6.0, pd.NA], dtype="Float32"),
"c": pd.array([True, False, False, pd.NA], dtype="boolean"),
"d": np.array([True, False, False, True]),
}
)
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(res_ufunc, expected)