Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

209 lines
7.2 KiB

from copy import deepcopy
from operator import methodcaller
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
MultiIndex,
Series,
date_range,
)
import pandas._testing as tm
class TestDataFrame:
@pytest.mark.parametrize("func", ["_set_axis_name", "rename_axis"])
def test_set_axis_name(self, func):
df = DataFrame([[1, 2], [3, 4]])
result = methodcaller(func, "foo")(df)
assert df.index.name is None
assert result.index.name == "foo"
result = methodcaller(func, "cols", axis=1)(df)
assert df.columns.name is None
assert result.columns.name == "cols"
@pytest.mark.parametrize("func", ["_set_axis_name", "rename_axis"])
def test_set_axis_name_mi(self, func):
df = DataFrame(
np.empty((3, 3)),
index=MultiIndex.from_tuples([("A", x) for x in list("aBc")]),
columns=MultiIndex.from_tuples([("C", x) for x in list("xyz")]),
)
level_names = ["L1", "L2"]
result = methodcaller(func, level_names)(df)
assert result.index.names == level_names
assert result.columns.names == [None, None]
result = methodcaller(func, level_names, axis=1)(df)
assert result.columns.names == ["L1", "L2"]
assert result.index.names == [None, None]
def test_nonzero_single_element(self):
# allow single item via bool method
msg_warn = (
"DataFrame.bool is now deprecated and will be removed "
"in future version of pandas"
)
df = DataFrame([[True]])
df1 = DataFrame([[False]])
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
assert df.bool()
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
assert not df1.bool()
df = DataFrame([[False, False]])
msg_err = "The truth value of a DataFrame is ambiguous"
with pytest.raises(ValueError, match=msg_err):
bool(df)
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
with pytest.raises(ValueError, match=msg_err):
df.bool()
def test_metadata_propagation_indiv_groupby(self):
# groupby
df = DataFrame(
{
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
"C": np.random.default_rng(2).standard_normal(8),
"D": np.random.default_rng(2).standard_normal(8),
}
)
result = df.groupby("A").sum()
tm.assert_metadata_equivalent(df, result)
def test_metadata_propagation_indiv_resample(self):
# resample
df = DataFrame(
np.random.default_rng(2).standard_normal((1000, 2)),
index=date_range("20130101", periods=1000, freq="s"),
)
result = df.resample("1T")
tm.assert_metadata_equivalent(df, result)
def test_metadata_propagation_indiv(self, monkeypatch):
# merging with override
# GH 6923
def finalize(self, other, method=None, **kwargs):
for name in self._metadata:
if method == "merge":
left, right = other.left, other.right
value = getattr(left, name, "") + "|" + getattr(right, name, "")
object.__setattr__(self, name, value)
elif method == "concat":
value = "+".join(
[getattr(o, name) for o in other.objs if getattr(o, name, None)]
)
object.__setattr__(self, name, value)
else:
object.__setattr__(self, name, getattr(other, name, ""))
return self
with monkeypatch.context() as m:
m.setattr(DataFrame, "_metadata", ["filename"])
m.setattr(DataFrame, "__finalize__", finalize)
df1 = DataFrame(
np.random.default_rng(2).integers(0, 4, (3, 2)), columns=["a", "b"]
)
df2 = DataFrame(
np.random.default_rng(2).integers(0, 4, (3, 2)), columns=["c", "d"]
)
DataFrame._metadata = ["filename"]
df1.filename = "fname1.csv"
df2.filename = "fname2.csv"
result = df1.merge(df2, left_on=["a"], right_on=["c"], how="inner")
assert result.filename == "fname1.csv|fname2.csv"
# concat
# GH#6927
df1 = DataFrame(
np.random.default_rng(2).integers(0, 4, (3, 2)), columns=list("ab")
)
df1.filename = "foo"
result = pd.concat([df1, df1])
assert result.filename == "foo+foo"
def test_set_attribute(self):
# Test for consistent setattr behavior when an attribute and a column
# have the same name (Issue #8994)
df = DataFrame({"x": [1, 2, 3]})
df.y = 2
df["y"] = [2, 4, 6]
df.y = 5
assert df.y == 5
tm.assert_series_equal(df["y"], Series([2, 4, 6], name="y"))
def test_deepcopy_empty(self):
# This test covers empty frame copying with non-empty column sets
# as reported in issue GH15370
empty_frame = DataFrame(data=[], index=[], columns=["A"])
empty_frame_copy = deepcopy(empty_frame)
tm.assert_frame_equal(empty_frame_copy, empty_frame)
# formerly in Generic but only test DataFrame
class TestDataFrame2:
@pytest.mark.parametrize("value", [1, "True", [1, 2, 3], 5.0])
def test_validate_bool_args(self, value):
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
msg = 'For argument "inplace" expected type bool, received type'
with pytest.raises(ValueError, match=msg):
df.copy().rename_axis(mapper={"a": "x", "b": "y"}, axis=1, inplace=value)
with pytest.raises(ValueError, match=msg):
df.copy().drop("a", axis=1, inplace=value)
with pytest.raises(ValueError, match=msg):
df.copy().fillna(value=0, inplace=value)
with pytest.raises(ValueError, match=msg):
df.copy().replace(to_replace=1, value=7, inplace=value)
with pytest.raises(ValueError, match=msg):
df.copy().interpolate(inplace=value)
with pytest.raises(ValueError, match=msg):
df.copy()._where(cond=df.a > 2, inplace=value)
with pytest.raises(ValueError, match=msg):
df.copy().mask(cond=df.a > 2, inplace=value)
def test_unexpected_keyword(self):
# GH8597
df = DataFrame(
np.random.default_rng(2).standard_normal((5, 2)), columns=["jim", "joe"]
)
ca = pd.Categorical([0, 0, 2, 2, 3, np.nan])
ts = df["joe"].copy()
ts[2] = np.nan
msg = "unexpected keyword"
with pytest.raises(TypeError, match=msg):
df.drop("joe", axis=1, in_place=True)
with pytest.raises(TypeError, match=msg):
df.reindex([1, 0], inplace=True)
with pytest.raises(TypeError, match=msg):
ca.fillna(0, inplace=True)
with pytest.raises(TypeError, match=msg):
ts.fillna(0, in_place=True)