You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
190 lines
6.0 KiB
190 lines
6.0 KiB
import datetime as dt
|
|
from string import ascii_lowercase
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
MultiIndex,
|
|
NaT,
|
|
Series,
|
|
Timestamp,
|
|
date_range,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
@pytest.mark.slow
|
|
@pytest.mark.parametrize("sort", [False, True])
|
|
@pytest.mark.parametrize("dropna", [False, True])
|
|
@pytest.mark.parametrize("as_index", [True, False])
|
|
@pytest.mark.parametrize("with_nan", [True, False])
|
|
@pytest.mark.parametrize("keys", [["joe"], ["joe", "jim"]])
|
|
def test_series_groupby_nunique(sort, dropna, as_index, with_nan, keys):
|
|
n = 100
|
|
m = 10
|
|
days = date_range("2015-08-23", periods=10)
|
|
df = DataFrame(
|
|
{
|
|
"jim": np.random.default_rng(2).choice(list(ascii_lowercase), n),
|
|
"joe": np.random.default_rng(2).choice(days, n),
|
|
"julie": np.random.default_rng(2).integers(0, m, n),
|
|
}
|
|
)
|
|
if with_nan:
|
|
df = df.astype({"julie": float}) # Explicit cast to avoid implicit cast below
|
|
df.loc[1::17, "jim"] = None
|
|
df.loc[3::37, "joe"] = None
|
|
df.loc[7::19, "julie"] = None
|
|
df.loc[8::19, "julie"] = None
|
|
df.loc[9::19, "julie"] = None
|
|
original_df = df.copy()
|
|
gr = df.groupby(keys, as_index=as_index, sort=sort)
|
|
left = gr["julie"].nunique(dropna=dropna)
|
|
|
|
gr = df.groupby(keys, as_index=as_index, sort=sort)
|
|
right = gr["julie"].apply(Series.nunique, dropna=dropna)
|
|
if not as_index:
|
|
right = right.reset_index(drop=True)
|
|
|
|
if as_index:
|
|
tm.assert_series_equal(left, right, check_names=False)
|
|
else:
|
|
tm.assert_frame_equal(left, right, check_names=False)
|
|
tm.assert_frame_equal(df, original_df)
|
|
|
|
|
|
def test_nunique():
|
|
df = DataFrame({"A": list("abbacc"), "B": list("abxacc"), "C": list("abbacx")})
|
|
|
|
expected = DataFrame({"A": list("abc"), "B": [1, 2, 1], "C": [1, 1, 2]})
|
|
result = df.groupby("A", as_index=False).nunique()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# as_index
|
|
expected.index = list("abc")
|
|
expected.index.name = "A"
|
|
expected = expected.drop(columns="A")
|
|
result = df.groupby("A").nunique()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# with na
|
|
result = df.replace({"x": None}).groupby("A").nunique(dropna=False)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# dropna
|
|
expected = DataFrame({"B": [1] * 3, "C": [1] * 3}, index=list("abc"))
|
|
expected.index.name = "A"
|
|
result = df.replace({"x": None}).groupby("A").nunique()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_nunique_with_object():
|
|
# GH 11077
|
|
data = DataFrame(
|
|
[
|
|
[100, 1, "Alice"],
|
|
[200, 2, "Bob"],
|
|
[300, 3, "Charlie"],
|
|
[-400, 4, "Dan"],
|
|
[500, 5, "Edith"],
|
|
],
|
|
columns=["amount", "id", "name"],
|
|
)
|
|
|
|
result = data.groupby(["id", "amount"])["name"].nunique()
|
|
index = MultiIndex.from_arrays([data.id, data.amount])
|
|
expected = Series([1] * 5, name="name", index=index)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_nunique_with_empty_series():
|
|
# GH 12553
|
|
data = Series(name="name", dtype=object)
|
|
result = data.groupby(level=0).nunique()
|
|
expected = Series(name="name", dtype="int64")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_nunique_with_timegrouper():
|
|
# GH 13453
|
|
test = DataFrame(
|
|
{
|
|
"time": [
|
|
Timestamp("2016-06-28 09:35:35"),
|
|
Timestamp("2016-06-28 16:09:30"),
|
|
Timestamp("2016-06-28 16:46:28"),
|
|
],
|
|
"data": ["1", "2", "3"],
|
|
}
|
|
).set_index("time")
|
|
result = test.groupby(pd.Grouper(freq="h"))["data"].nunique()
|
|
expected = test.groupby(pd.Grouper(freq="h"))["data"].apply(Series.nunique)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"key, data, dropna, expected",
|
|
[
|
|
(
|
|
["x", "x", "x"],
|
|
[Timestamp("2019-01-01"), NaT, Timestamp("2019-01-01")],
|
|
True,
|
|
Series([1], index=pd.Index(["x"], name="key"), name="data"),
|
|
),
|
|
(
|
|
["x", "x", "x"],
|
|
[dt.date(2019, 1, 1), NaT, dt.date(2019, 1, 1)],
|
|
True,
|
|
Series([1], index=pd.Index(["x"], name="key"), name="data"),
|
|
),
|
|
(
|
|
["x", "x", "x", "y", "y"],
|
|
[dt.date(2019, 1, 1), NaT, dt.date(2019, 1, 1), NaT, dt.date(2019, 1, 1)],
|
|
False,
|
|
Series([2, 2], index=pd.Index(["x", "y"], name="key"), name="data"),
|
|
),
|
|
(
|
|
["x", "x", "x", "x", "y"],
|
|
[dt.date(2019, 1, 1), NaT, dt.date(2019, 1, 1), NaT, dt.date(2019, 1, 1)],
|
|
False,
|
|
Series([2, 1], index=pd.Index(["x", "y"], name="key"), name="data"),
|
|
),
|
|
],
|
|
)
|
|
def test_nunique_with_NaT(key, data, dropna, expected):
|
|
# GH 27951
|
|
df = DataFrame({"key": key, "data": data})
|
|
result = df.groupby(["key"])["data"].nunique(dropna=dropna)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_nunique_preserves_column_level_names():
|
|
# GH 23222
|
|
test = DataFrame([1, 2, 2], columns=pd.Index(["A"], name="level_0"))
|
|
result = test.groupby([0, 0, 0]).nunique()
|
|
expected = DataFrame([2], index=np.array([0]), columns=test.columns)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_nunique_transform_with_datetime():
|
|
# GH 35109 - transform with nunique on datetimes results in integers
|
|
df = DataFrame(date_range("2008-12-31", "2009-01-02"), columns=["date"])
|
|
result = df.groupby([0, 0, 1])["date"].transform("nunique")
|
|
expected = Series([2, 2, 1], name="date")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_empty_categorical(observed):
|
|
# GH#21334
|
|
cat = Series([1]).astype("category")
|
|
ser = cat[:0]
|
|
gb = ser.groupby(ser, observed=observed)
|
|
result = gb.nunique()
|
|
if observed:
|
|
expected = Series([], index=cat[:0], dtype="int64")
|
|
else:
|
|
expected = Series([0], index=cat, dtype="int64")
|
|
tm.assert_series_equal(result, expected)
|
|
|