You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
441 lines
16 KiB
441 lines
16 KiB
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.compat import IS64
|
|
|
|
from pandas import (
|
|
DataFrame,
|
|
Index,
|
|
MultiIndex,
|
|
Series,
|
|
date_range,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.core.algorithms import safe_sort
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 0]),
|
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 1]),
|
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", "C"]),
|
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1.0, 0]),
|
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0.0, 1]),
|
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", 1]),
|
|
DataFrame([[2.0, 4.0], [1.0, 2.0], [5.0, 2.0], [8.0, 1.0]], columns=[1, 0.0]),
|
|
DataFrame([[2, 4.0], [1, 2.0], [5, 2.0], [8, 1.0]], columns=[0, 1.0]),
|
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1.0]], columns=[1.0, "X"]),
|
|
]
|
|
)
|
|
def pairwise_frames(request):
|
|
"""Pairwise frames test_pairwise"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture
|
|
def pairwise_target_frame():
|
|
"""Pairwise target frame for test_pairwise"""
|
|
return DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0, 1])
|
|
|
|
|
|
@pytest.fixture
|
|
def pairwise_other_frame():
|
|
"""Pairwise other frame for test_pairwise"""
|
|
return DataFrame(
|
|
[[None, 1, 1], [None, 1, 2], [None, 3, 2], [None, 8, 1]],
|
|
columns=["Y", "Z", "X"],
|
|
)
|
|
|
|
|
|
def test_rolling_cov(series):
|
|
A = series
|
|
B = A + np.random.default_rng(2).standard_normal(len(A))
|
|
|
|
result = A.rolling(window=50, min_periods=25).cov(B)
|
|
tm.assert_almost_equal(result.iloc[-1], np.cov(A[-50:], B[-50:])[0, 1])
|
|
|
|
|
|
def test_rolling_corr(series):
|
|
A = series
|
|
B = A + np.random.default_rng(2).standard_normal(len(A))
|
|
|
|
result = A.rolling(window=50, min_periods=25).corr(B)
|
|
tm.assert_almost_equal(result.iloc[-1], np.corrcoef(A[-50:], B[-50:])[0, 1])
|
|
|
|
# test for correct bias correction
|
|
a = tm.makeTimeSeries()
|
|
b = tm.makeTimeSeries()
|
|
a[:5] = np.nan
|
|
b[:10] = np.nan
|
|
|
|
result = a.rolling(window=len(a), min_periods=1).corr(b)
|
|
tm.assert_almost_equal(result.iloc[-1], a.corr(b))
|
|
|
|
|
|
@pytest.mark.parametrize("func", ["cov", "corr"])
|
|
def test_rolling_pairwise_cov_corr(func, frame):
|
|
result = getattr(frame.rolling(window=10, min_periods=5), func)()
|
|
result = result.loc[(slice(None), 1), 5]
|
|
result.index = result.index.droplevel(1)
|
|
expected = getattr(frame[1].rolling(window=10, min_periods=5), func)(frame[5])
|
|
tm.assert_series_equal(result, expected, check_names=False)
|
|
|
|
|
|
@pytest.mark.parametrize("method", ["corr", "cov"])
|
|
def test_flex_binary_frame(method, frame):
|
|
series = frame[1]
|
|
|
|
res = getattr(series.rolling(window=10), method)(frame)
|
|
res2 = getattr(frame.rolling(window=10), method)(series)
|
|
exp = frame.apply(lambda x: getattr(series.rolling(window=10), method)(x))
|
|
|
|
tm.assert_frame_equal(res, exp)
|
|
tm.assert_frame_equal(res2, exp)
|
|
|
|
frame2 = frame.copy()
|
|
frame2 = DataFrame(
|
|
np.random.default_rng(2).standard_normal(frame2.shape),
|
|
index=frame2.index,
|
|
columns=frame2.columns,
|
|
)
|
|
|
|
res3 = getattr(frame.rolling(window=10), method)(frame2)
|
|
exp = DataFrame(
|
|
{k: getattr(frame[k].rolling(window=10), method)(frame2[k]) for k in frame}
|
|
)
|
|
tm.assert_frame_equal(res3, exp)
|
|
|
|
|
|
@pytest.mark.parametrize("window", range(7))
|
|
def test_rolling_corr_with_zero_variance(window):
|
|
# GH 18430
|
|
s = Series(np.zeros(20))
|
|
other = Series(np.arange(20))
|
|
|
|
assert s.rolling(window=window).corr(other=other).isna().all()
|
|
|
|
|
|
def test_corr_sanity():
|
|
# GH 3155
|
|
df = DataFrame(
|
|
np.array(
|
|
[
|
|
[0.87024726, 0.18505595],
|
|
[0.64355431, 0.3091617],
|
|
[0.92372966, 0.50552513],
|
|
[0.00203756, 0.04520709],
|
|
[0.84780328, 0.33394331],
|
|
[0.78369152, 0.63919667],
|
|
]
|
|
)
|
|
)
|
|
|
|
res = df[0].rolling(5, center=True).corr(df[1])
|
|
assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res)
|
|
|
|
df = DataFrame(np.random.default_rng(2).random((30, 2)))
|
|
res = df[0].rolling(5, center=True).corr(df[1])
|
|
assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res)
|
|
|
|
|
|
def test_rolling_cov_diff_length():
|
|
# GH 7512
|
|
s1 = Series([1, 2, 3], index=[0, 1, 2])
|
|
s2 = Series([1, 3], index=[0, 2])
|
|
result = s1.rolling(window=3, min_periods=2).cov(s2)
|
|
expected = Series([None, None, 2.0])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
s2a = Series([1, None, 3], index=[0, 1, 2])
|
|
result = s1.rolling(window=3, min_periods=2).cov(s2a)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_rolling_corr_diff_length():
|
|
# GH 7512
|
|
s1 = Series([1, 2, 3], index=[0, 1, 2])
|
|
s2 = Series([1, 3], index=[0, 2])
|
|
result = s1.rolling(window=3, min_periods=2).corr(s2)
|
|
expected = Series([None, None, 1.0])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
s2a = Series([1, None, 3], index=[0, 1, 2])
|
|
result = s1.rolling(window=3, min_periods=2).corr(s2a)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"f",
|
|
[
|
|
lambda x: (x.rolling(window=10, min_periods=5).cov(x, pairwise=True)),
|
|
lambda x: (x.rolling(window=10, min_periods=5).corr(x, pairwise=True)),
|
|
],
|
|
)
|
|
def test_rolling_functions_window_non_shrinkage_binary(f):
|
|
# corr/cov return a MI DataFrame
|
|
df = DataFrame(
|
|
[[1, 5], [3, 2], [3, 9], [-1, 0]],
|
|
columns=Index(["A", "B"], name="foo"),
|
|
index=Index(range(4), name="bar"),
|
|
)
|
|
df_expected = DataFrame(
|
|
columns=Index(["A", "B"], name="foo"),
|
|
index=MultiIndex.from_product([df.index, df.columns], names=["bar", "foo"]),
|
|
dtype="float64",
|
|
)
|
|
df_result = f(df)
|
|
tm.assert_frame_equal(df_result, df_expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"f",
|
|
[
|
|
lambda x: (x.rolling(window=10, min_periods=5).cov(x, pairwise=True)),
|
|
lambda x: (x.rolling(window=10, min_periods=5).corr(x, pairwise=True)),
|
|
],
|
|
)
|
|
def test_moment_functions_zero_length_pairwise(f):
|
|
df1 = DataFrame()
|
|
df2 = DataFrame(columns=Index(["a"], name="foo"), index=Index([], name="bar"))
|
|
df2["a"] = df2["a"].astype("float64")
|
|
|
|
df1_expected = DataFrame(index=MultiIndex.from_product([df1.index, df1.columns]))
|
|
df2_expected = DataFrame(
|
|
index=MultiIndex.from_product([df2.index, df2.columns], names=["bar", "foo"]),
|
|
columns=Index(["a"], name="foo"),
|
|
dtype="float64",
|
|
)
|
|
|
|
df1_result = f(df1)
|
|
tm.assert_frame_equal(df1_result, df1_expected)
|
|
|
|
df2_result = f(df2)
|
|
tm.assert_frame_equal(df2_result, df2_expected)
|
|
|
|
|
|
class TestPairwise:
|
|
# GH 7738
|
|
@pytest.mark.parametrize("f", [lambda x: x.cov(), lambda x: x.corr()])
|
|
def test_no_flex(self, pairwise_frames, pairwise_target_frame, f):
|
|
# DataFrame methods (which do not call flex_binary_moment())
|
|
|
|
result = f(pairwise_frames)
|
|
tm.assert_index_equal(result.index, pairwise_frames.columns)
|
|
tm.assert_index_equal(result.columns, pairwise_frames.columns)
|
|
expected = f(pairwise_target_frame)
|
|
# since we have sorted the results
|
|
# we can only compare non-nans
|
|
result = result.dropna().values
|
|
expected = expected.dropna().values
|
|
|
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
|
|
|
|
@pytest.mark.parametrize(
|
|
"f",
|
|
[
|
|
lambda x: x.expanding().cov(pairwise=True),
|
|
lambda x: x.expanding().corr(pairwise=True),
|
|
lambda x: x.rolling(window=3).cov(pairwise=True),
|
|
lambda x: x.rolling(window=3).corr(pairwise=True),
|
|
lambda x: x.ewm(com=3).cov(pairwise=True),
|
|
lambda x: x.ewm(com=3).corr(pairwise=True),
|
|
],
|
|
)
|
|
def test_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f):
|
|
# DataFrame with itself, pairwise=True
|
|
# note that we may construct the 1st level of the MI
|
|
# in a non-monotonic way, so compare accordingly
|
|
result = f(pairwise_frames)
|
|
tm.assert_index_equal(
|
|
result.index.levels[0], pairwise_frames.index, check_names=False
|
|
)
|
|
tm.assert_index_equal(
|
|
safe_sort(result.index.levels[1]),
|
|
safe_sort(pairwise_frames.columns.unique()),
|
|
)
|
|
tm.assert_index_equal(result.columns, pairwise_frames.columns)
|
|
expected = f(pairwise_target_frame)
|
|
# since we have sorted the results
|
|
# we can only compare non-nans
|
|
result = result.dropna().values
|
|
expected = expected.dropna().values
|
|
|
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
|
|
|
|
@pytest.mark.parametrize(
|
|
"f",
|
|
[
|
|
lambda x: x.expanding().cov(pairwise=False),
|
|
lambda x: x.expanding().corr(pairwise=False),
|
|
lambda x: x.rolling(window=3).cov(pairwise=False),
|
|
lambda x: x.rolling(window=3).corr(pairwise=False),
|
|
lambda x: x.ewm(com=3).cov(pairwise=False),
|
|
lambda x: x.ewm(com=3).corr(pairwise=False),
|
|
],
|
|
)
|
|
def test_no_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f):
|
|
# DataFrame with itself, pairwise=False
|
|
result = f(pairwise_frames)
|
|
tm.assert_index_equal(result.index, pairwise_frames.index)
|
|
tm.assert_index_equal(result.columns, pairwise_frames.columns)
|
|
expected = f(pairwise_target_frame)
|
|
# since we have sorted the results
|
|
# we can only compare non-nans
|
|
result = result.dropna().values
|
|
expected = expected.dropna().values
|
|
|
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
|
|
|
|
@pytest.mark.parametrize(
|
|
"f",
|
|
[
|
|
lambda x, y: x.expanding().cov(y, pairwise=True),
|
|
lambda x, y: x.expanding().corr(y, pairwise=True),
|
|
lambda x, y: x.rolling(window=3).cov(y, pairwise=True),
|
|
# TODO: We're missing a flag somewhere in meson
|
|
pytest.param(
|
|
lambda x, y: x.rolling(window=3).corr(y, pairwise=True),
|
|
marks=pytest.mark.xfail(
|
|
not IS64, reason="Precision issues on 32 bit", strict=False
|
|
),
|
|
),
|
|
lambda x, y: x.ewm(com=3).cov(y, pairwise=True),
|
|
lambda x, y: x.ewm(com=3).corr(y, pairwise=True),
|
|
],
|
|
)
|
|
def test_pairwise_with_other(
|
|
self, pairwise_frames, pairwise_target_frame, pairwise_other_frame, f
|
|
):
|
|
# DataFrame with another DataFrame, pairwise=True
|
|
result = f(pairwise_frames, pairwise_other_frame)
|
|
tm.assert_index_equal(
|
|
result.index.levels[0], pairwise_frames.index, check_names=False
|
|
)
|
|
tm.assert_index_equal(
|
|
safe_sort(result.index.levels[1]),
|
|
safe_sort(pairwise_other_frame.columns.unique()),
|
|
)
|
|
expected = f(pairwise_target_frame, pairwise_other_frame)
|
|
# since we have sorted the results
|
|
# we can only compare non-nans
|
|
result = result.dropna().values
|
|
expected = expected.dropna().values
|
|
|
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
|
|
|
|
@pytest.mark.filterwarnings("ignore:RuntimeWarning")
|
|
@pytest.mark.parametrize(
|
|
"f",
|
|
[
|
|
lambda x, y: x.expanding().cov(y, pairwise=False),
|
|
lambda x, y: x.expanding().corr(y, pairwise=False),
|
|
lambda x, y: x.rolling(window=3).cov(y, pairwise=False),
|
|
lambda x, y: x.rolling(window=3).corr(y, pairwise=False),
|
|
lambda x, y: x.ewm(com=3).cov(y, pairwise=False),
|
|
lambda x, y: x.ewm(com=3).corr(y, pairwise=False),
|
|
],
|
|
)
|
|
def test_no_pairwise_with_other(self, pairwise_frames, pairwise_other_frame, f):
|
|
# DataFrame with another DataFrame, pairwise=False
|
|
result = (
|
|
f(pairwise_frames, pairwise_other_frame)
|
|
if pairwise_frames.columns.is_unique
|
|
else None
|
|
)
|
|
if result is not None:
|
|
# we can have int and str columns
|
|
expected_index = pairwise_frames.index.union(pairwise_other_frame.index)
|
|
expected_columns = pairwise_frames.columns.union(
|
|
pairwise_other_frame.columns
|
|
)
|
|
tm.assert_index_equal(result.index, expected_index)
|
|
tm.assert_index_equal(result.columns, expected_columns)
|
|
else:
|
|
with pytest.raises(ValueError, match="'arg1' columns are not unique"):
|
|
f(pairwise_frames, pairwise_other_frame)
|
|
with pytest.raises(ValueError, match="'arg2' columns are not unique"):
|
|
f(pairwise_other_frame, pairwise_frames)
|
|
|
|
@pytest.mark.parametrize(
|
|
"f",
|
|
[
|
|
lambda x, y: x.expanding().cov(y),
|
|
lambda x, y: x.expanding().corr(y),
|
|
lambda x, y: x.rolling(window=3).cov(y),
|
|
lambda x, y: x.rolling(window=3).corr(y),
|
|
lambda x, y: x.ewm(com=3).cov(y),
|
|
lambda x, y: x.ewm(com=3).corr(y),
|
|
],
|
|
)
|
|
def test_pairwise_with_series(self, pairwise_frames, pairwise_target_frame, f):
|
|
# DataFrame with a Series
|
|
result = f(pairwise_frames, Series([1, 1, 3, 8]))
|
|
tm.assert_index_equal(result.index, pairwise_frames.index)
|
|
tm.assert_index_equal(result.columns, pairwise_frames.columns)
|
|
expected = f(pairwise_target_frame, Series([1, 1, 3, 8]))
|
|
# since we have sorted the results
|
|
# we can only compare non-nans
|
|
result = result.dropna().values
|
|
expected = expected.dropna().values
|
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
|
|
|
|
result = f(Series([1, 1, 3, 8]), pairwise_frames)
|
|
tm.assert_index_equal(result.index, pairwise_frames.index)
|
|
tm.assert_index_equal(result.columns, pairwise_frames.columns)
|
|
expected = f(Series([1, 1, 3, 8]), pairwise_target_frame)
|
|
# since we have sorted the results
|
|
# we can only compare non-nans
|
|
result = result.dropna().values
|
|
expected = expected.dropna().values
|
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
|
|
|
|
def test_corr_freq_memory_error(self):
|
|
# GH 31789
|
|
s = Series(range(5), index=date_range("2020", periods=5))
|
|
result = s.rolling("12H").corr(s)
|
|
expected = Series([np.nan] * 5, index=date_range("2020", periods=5))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_cov_mulittindex(self):
|
|
# GH 34440
|
|
|
|
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")])
|
|
index = range(3)
|
|
df = DataFrame(np.arange(24).reshape(3, 8), index=index, columns=columns)
|
|
|
|
result = df.ewm(alpha=0.1).cov()
|
|
|
|
index = MultiIndex.from_product([range(3), list("ab"), list("xy"), list("AB")])
|
|
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")])
|
|
expected = DataFrame(
|
|
np.vstack(
|
|
(
|
|
np.full((8, 8), np.nan),
|
|
np.full((8, 8), 32.000000),
|
|
np.full((8, 8), 63.881919),
|
|
)
|
|
),
|
|
index=index,
|
|
columns=columns,
|
|
)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_multindex_columns_pairwise_func(self):
|
|
# GH 21157
|
|
columns = MultiIndex.from_arrays([["M", "N"], ["P", "Q"]], names=["a", "b"])
|
|
df = DataFrame(np.ones((5, 2)), columns=columns)
|
|
result = df.rolling(3).corr()
|
|
expected = DataFrame(
|
|
np.nan,
|
|
index=MultiIndex.from_arrays(
|
|
[
|
|
np.repeat(np.arange(5, dtype=np.int64), 2),
|
|
["M", "N"] * 5,
|
|
["P", "Q"] * 5,
|
|
],
|
|
names=[None, "a", "b"],
|
|
),
|
|
columns=columns,
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|