Olli Graf
11 months ago
8 changed files with 251 additions and 0 deletions
@ -0,0 +1,20 @@ |
|||||
|
#! ./bin/python |
||||
|
#encoding: utf-8 |
||||
|
import matplotlib.pyplot as plt |
||||
|
import numpy as np |
||||
|
|
||||
|
labels = [ 'Pineberry Pi pcie1_gen=2','Pineberry Pi pcie1_gen=3', 'MicroSD Raspi 5', 'MicroSD Raspi 4'] |
||||
|
io_read= np.array([148.50,171.99,30.85,10.15]) |
||||
|
io_write = np.array([99.15,114.97,20.45,6.63]) |
||||
|
legend = ['Schreiben','Lesen'] |
||||
|
#Höhe der Balken |
||||
|
__hoehe__ =0.6 |
||||
|
|
||||
|
fig,ax = plt.subplots() |
||||
|
|
||||
|
|
||||
|
plt.barh(labels,io_write,__hoehe__) |
||||
|
plt.barh(labels,io_read,__hoehe__,left=io_write) |
||||
|
plt.legend(legend) |
||||
|
plt.show() |
||||
|
|
@ -0,0 +1,30 @@ |
|||||
|
#! ./bin/python |
||||
|
# encoding:utf-8 |
||||
|
import matplotlib.pyplot as plt |
||||
|
import numpy as np |
||||
|
|
||||
|
def plot_normal_parabel(): |
||||
|
# Erzeuge Datenpunkte für x-Werte von -10 bis 10 |
||||
|
x = np.linspace(-3, 3, 100) |
||||
|
|
||||
|
# Berechne die y-Werte für die Normalparabel |
||||
|
y = x**2 |
||||
|
|
||||
|
# Erstelle das Diagramm |
||||
|
plt.plot(x, y, label='Normalparabel: $y=x^2$') |
||||
|
|
||||
|
# Beschriftungen und Titel hinzufügen |
||||
|
plt.xlabel('x-Achse') |
||||
|
plt.ylabel('y-Achse') |
||||
|
plt.title('Normalparabel') |
||||
|
|
||||
|
# Legende hinzufügen |
||||
|
plt.legend() |
||||
|
|
||||
|
|
||||
|
# Funktion aufrufen, um die Normalparabel zu zeichnen |
||||
|
plot_normal_parabel() |
||||
|
|
||||
|
# Diagramm anzeigen |
||||
|
plt.grid(True) |
||||
|
plt.show() |
@ -0,0 +1,45 @@ |
|||||
|
#! ./bin/python |
||||
|
# encoding:utf-8 |
||||
|
import matplotlib.pyplot as plt |
||||
|
import numpy as np |
||||
|
|
||||
|
def plot_normal_parabel(): |
||||
|
# Erzeuge Datenpunkte für x-Werte von -10 bis 10 |
||||
|
x = np.linspace(-3, 3, 100) |
||||
|
|
||||
|
# Berechne die y-Werte für die Normalparabel |
||||
|
y = x**2 |
||||
|
|
||||
|
# Erstelle das Diagramm |
||||
|
plt.plot(x, y, label='Normalparabel: $y=x^2$') |
||||
|
|
||||
|
# Beschriftungen und Titel hinzufügen |
||||
|
plt.xlabel('x-Achse') |
||||
|
plt.ylabel('y-Achse') |
||||
|
plt.title('Normalparabel') |
||||
|
|
||||
|
# Legende hinzufügen |
||||
|
plt.legend() |
||||
|
|
||||
|
|
||||
|
def plot_sinus_function(): |
||||
|
# Erzeuge Datenpunkte für x-Werte von -2π bis 2π |
||||
|
x = np.linspace(-2 * np.pi, 2 * np.pi, 100) |
||||
|
|
||||
|
# Berechne die y-Werte für die Sinusfunktion |
||||
|
y = np.sin(x) |
||||
|
|
||||
|
# Erstelle das Diagramm für die Sinusfunktion |
||||
|
plt.plot(x, y, label='Sinusfunktion: $y = \sin(x)$', color='blue') |
||||
|
|
||||
|
# Legende hinzufügen |
||||
|
plt.legend() |
||||
|
|
||||
|
|
||||
|
# Funktion aufrufen, um die Normalparabel zu zeichnen |
||||
|
plot_normal_parabel() |
||||
|
plot_sinus_function() |
||||
|
|
||||
|
# Diagramm anzeigen |
||||
|
plt.grid(True) |
||||
|
plt.show() |
@ -0,0 +1,23 @@ |
|||||
|
#! ./bin/python |
||||
|
#encoding: utf-8 |
||||
|
|
||||
|
import matplotlib.pyplot as plt |
||||
|
import numpy as np |
||||
|
|
||||
|
jahre= np.array(['2018','2019', '2020']) |
||||
|
aepfel= np.array([1000,1500,2000]) |
||||
|
erdbeeren =np.array([500,950,900]) |
||||
|
bananen=np.array([400,800,750]) |
||||
|
breite = 0.6 |
||||
|
|
||||
|
fig,ax = plt.subplots() |
||||
|
|
||||
|
|
||||
|
#ax.legend('Verkäufe') |
||||
|
ax.bar(jahre,bananen,color='yellow') |
||||
|
ax.bar(jahre,erdbeeren,bottom=bananen,color='red') |
||||
|
ax.bar(jahre,aepfel,bottom=erdbeeren,color='green') |
||||
|
|
||||
|
plt.legend(['Bananen','Erdbeeren','Äpfel']) |
||||
|
|
||||
|
plt.show() |
@ -0,0 +1,47 @@ |
|||||
|
#encoding: utf-8 |
||||
|
|
||||
|
def read_vornamen(filename): |
||||
|
dict = {} |
||||
|
# Der Zähler dient nur dazu, die erste Zeile zu überspringen |
||||
|
count = 0 |
||||
|
|
||||
|
dict['mädchen'] = 0 |
||||
|
dict['jungs'] = 0 |
||||
|
dict['divers'] = 0 |
||||
|
with open(filename,'r') as f: |
||||
|
for zeile in f: |
||||
|
if count >0: |
||||
|
# einzelne Zeile in seine Bestandteile zerlegen |
||||
|
splitted = zeile.strip().split(';') |
||||
|
anzahl = splitted[0] |
||||
|
vorname = splitted[1] |
||||
|
geschlecht= splitted[2] |
||||
|
position = splitted[3] |
||||
|
|
||||
|
if geschlecht == 'w': |
||||
|
dict['mädchen'] += 1 |
||||
|
elif geschlecht == 'm': |
||||
|
dict['jungs'] += 1 |
||||
|
else: |
||||
|
dict['divers'] += 1 |
||||
|
|
||||
|
|
||||
|
|
||||
|
data = {} |
||||
|
data['vorname'] = vorname |
||||
|
data['anzahl'] = int(anzahl) |
||||
|
data['geschlecht'] = geschlecht |
||||
|
data['position'] = position |
||||
|
if vorname not in dict: |
||||
|
dict[vorname] = data |
||||
|
else: |
||||
|
# doppelte Einträge summieren wir auf. |
||||
|
e = dict[vorname] |
||||
|
e['anzahl'] = int(anzahl) + (e['anzahl']) |
||||
|
count +=1 |
||||
|
|
||||
|
gesamt = dict['jungs'] + dict['mädchen'] + dict['divers'] |
||||
|
|
||||
|
dict['gesamt'] = gesamt |
||||
|
return dict |
||||
|
|
@ -0,0 +1,42 @@ |
|||||
|
#! ./bin/python |
||||
|
#encondig: utf-8 |
||||
|
|
||||
|
import matplotlib.pyplot as plt |
||||
|
from vornamen_reader import read_vornamen |
||||
|
|
||||
|
|
||||
|
def plot_geschlecht(vornamen): |
||||
|
|
||||
|
bez= ['Mädchen', 'Jungs','divers'] |
||||
|
geburten = [vornamen['mädchen'], vornamen['jungs'],vornamen['divers']] |
||||
|
|
||||
|
print(f'geburten={geburten}') |
||||
|
|
||||
|
farben = ['red','blue','green'] |
||||
|
|
||||
|
fig, ax = plt.subplots() |
||||
|
print(f'fig={fig}') |
||||
|
print(f'ax={ax}') |
||||
|
|
||||
|
ax.bar(bez,geburten,label=bez, color=farben) |
||||
|
ax.set_ylabel('Geburten') |
||||
|
ax.set_title('Geburten nach Geschlecht Wuppertal 2020') |
||||
|
ax.legend(title='Geburten') |
||||
|
|
||||
|
plt.show() |
||||
|
|
||||
|
if __name__ == '__main__': |
||||
|
vornamen = read_vornamen('./Vornamen_Wuppertal_2020.csv') |
||||
|
|
||||
|
jungs= vornamen['jungs'] |
||||
|
maedels = vornamen['mädchen'] |
||||
|
divers = vornamen['divers'] |
||||
|
|
||||
|
print(f'Jungs: {jungs}') |
||||
|
print(f'Mädchen: {maedels}') |
||||
|
print(f'divers: {divers}') |
||||
|
# print(f'vornamen={vornamen}') |
||||
|
|
||||
|
plot_geschlecht(vornamen) |
||||
|
|
||||
|
|
@ -0,0 +1,43 @@ |
|||||
|
#! ./bin/python |
||||
|
#encondig: utf-8 |
||||
|
|
||||
|
import matplotlib.pyplot as plt |
||||
|
import logging |
||||
|
from vornamen_reader import read_vornamen |
||||
|
|
||||
|
logging.basicConfig( format='%(asctime)-15s [%(levelname)s] %(funcName)s: %(message)s', level=logging.INFO) |
||||
|
|
||||
|
def plot_geschlecht(vornamen): |
||||
|
|
||||
|
bez= ['Mädchen', 'Jungs','divers'] |
||||
|
geburten = [vornamen['mädchen'], vornamen['jungs'],vornamen['divers']] |
||||
|
|
||||
|
logging.info(f'geburten={geburten}') |
||||
|
|
||||
|
proz_maedels = round(vornamen['mädchen'] / vornamen['gesamt'] *100,2) |
||||
|
proz_jungs = round(vornamen['jungs'] / vornamen['gesamt'] *100,2) |
||||
|
proz_divers = round(vornamen['divers'] / vornamen['gesamt'] *100,2) |
||||
|
|
||||
|
farben = ['red','blue','green'] |
||||
|
sizes= [proz_maedels,proz_jungs,proz_divers] |
||||
|
|
||||
|
logging.info(f'sizes={sizes}') |
||||
|
|
||||
|
fig, ax = plt.subplots() |
||||
|
|
||||
|
ax.pie(sizes,explode=(0,0,0), labels=bez,autopct='%1.1f%%',shadow=True,startangle=90) |
||||
|
ax.axis('equal') |
||||
|
|
||||
|
plt.show() |
||||
|
|
||||
|
if __name__ == '__main__': |
||||
|
vornamen = read_vornamen('./Vornamen_Wuppertal_2020.csv') |
||||
|
|
||||
|
jungs= vornamen['jungs'] |
||||
|
maedels = vornamen['mädchen'] |
||||
|
divers = vornamen['divers'] |
||||
|
|
||||
|
|
||||
|
plot_geschlecht(vornamen) |
||||
|
|
||||
|
|
Loading…
Reference in new issue