Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

441 lines
16 KiB

import numpy as np
import pytest
from pandas.compat import IS64
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
date_range,
)
import pandas._testing as tm
from pandas.core.algorithms import safe_sort
@pytest.fixture(
params=[
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 0]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 1]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", "C"]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1.0, 0]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0.0, 1]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", 1]),
DataFrame([[2.0, 4.0], [1.0, 2.0], [5.0, 2.0], [8.0, 1.0]], columns=[1, 0.0]),
DataFrame([[2, 4.0], [1, 2.0], [5, 2.0], [8, 1.0]], columns=[0, 1.0]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1.0]], columns=[1.0, "X"]),
]
)
def pairwise_frames(request):
"""Pairwise frames test_pairwise"""
return request.param
@pytest.fixture
def pairwise_target_frame():
"""Pairwise target frame for test_pairwise"""
return DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0, 1])
@pytest.fixture
def pairwise_other_frame():
"""Pairwise other frame for test_pairwise"""
return DataFrame(
[[None, 1, 1], [None, 1, 2], [None, 3, 2], [None, 8, 1]],
columns=["Y", "Z", "X"],
)
def test_rolling_cov(series):
A = series
B = A + np.random.default_rng(2).standard_normal(len(A))
result = A.rolling(window=50, min_periods=25).cov(B)
tm.assert_almost_equal(result.iloc[-1], np.cov(A[-50:], B[-50:])[0, 1])
def test_rolling_corr(series):
A = series
B = A + np.random.default_rng(2).standard_normal(len(A))
result = A.rolling(window=50, min_periods=25).corr(B)
tm.assert_almost_equal(result.iloc[-1], np.corrcoef(A[-50:], B[-50:])[0, 1])
# test for correct bias correction
a = tm.makeTimeSeries()
b = tm.makeTimeSeries()
a[:5] = np.nan
b[:10] = np.nan
result = a.rolling(window=len(a), min_periods=1).corr(b)
tm.assert_almost_equal(result.iloc[-1], a.corr(b))
@pytest.mark.parametrize("func", ["cov", "corr"])
def test_rolling_pairwise_cov_corr(func, frame):
result = getattr(frame.rolling(window=10, min_periods=5), func)()
result = result.loc[(slice(None), 1), 5]
result.index = result.index.droplevel(1)
expected = getattr(frame[1].rolling(window=10, min_periods=5), func)(frame[5])
tm.assert_series_equal(result, expected, check_names=False)
@pytest.mark.parametrize("method", ["corr", "cov"])
def test_flex_binary_frame(method, frame):
series = frame[1]
res = getattr(series.rolling(window=10), method)(frame)
res2 = getattr(frame.rolling(window=10), method)(series)
exp = frame.apply(lambda x: getattr(series.rolling(window=10), method)(x))
tm.assert_frame_equal(res, exp)
tm.assert_frame_equal(res2, exp)
frame2 = frame.copy()
frame2 = DataFrame(
np.random.default_rng(2).standard_normal(frame2.shape),
index=frame2.index,
columns=frame2.columns,
)
res3 = getattr(frame.rolling(window=10), method)(frame2)
exp = DataFrame(
{k: getattr(frame[k].rolling(window=10), method)(frame2[k]) for k in frame}
)
tm.assert_frame_equal(res3, exp)
@pytest.mark.parametrize("window", range(7))
def test_rolling_corr_with_zero_variance(window):
# GH 18430
s = Series(np.zeros(20))
other = Series(np.arange(20))
assert s.rolling(window=window).corr(other=other).isna().all()
def test_corr_sanity():
# GH 3155
df = DataFrame(
np.array(
[
[0.87024726, 0.18505595],
[0.64355431, 0.3091617],
[0.92372966, 0.50552513],
[0.00203756, 0.04520709],
[0.84780328, 0.33394331],
[0.78369152, 0.63919667],
]
)
)
res = df[0].rolling(5, center=True).corr(df[1])
assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res)
df = DataFrame(np.random.default_rng(2).random((30, 2)))
res = df[0].rolling(5, center=True).corr(df[1])
assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res)
def test_rolling_cov_diff_length():
# GH 7512
s1 = Series([1, 2, 3], index=[0, 1, 2])
s2 = Series([1, 3], index=[0, 2])
result = s1.rolling(window=3, min_periods=2).cov(s2)
expected = Series([None, None, 2.0])
tm.assert_series_equal(result, expected)
s2a = Series([1, None, 3], index=[0, 1, 2])
result = s1.rolling(window=3, min_periods=2).cov(s2a)
tm.assert_series_equal(result, expected)
def test_rolling_corr_diff_length():
# GH 7512
s1 = Series([1, 2, 3], index=[0, 1, 2])
s2 = Series([1, 3], index=[0, 2])
result = s1.rolling(window=3, min_periods=2).corr(s2)
expected = Series([None, None, 1.0])
tm.assert_series_equal(result, expected)
s2a = Series([1, None, 3], index=[0, 1, 2])
result = s1.rolling(window=3, min_periods=2).corr(s2a)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"f",
[
lambda x: (x.rolling(window=10, min_periods=5).cov(x, pairwise=True)),
lambda x: (x.rolling(window=10, min_periods=5).corr(x, pairwise=True)),
],
)
def test_rolling_functions_window_non_shrinkage_binary(f):
# corr/cov return a MI DataFrame
df = DataFrame(
[[1, 5], [3, 2], [3, 9], [-1, 0]],
columns=Index(["A", "B"], name="foo"),
index=Index(range(4), name="bar"),
)
df_expected = DataFrame(
columns=Index(["A", "B"], name="foo"),
index=MultiIndex.from_product([df.index, df.columns], names=["bar", "foo"]),
dtype="float64",
)
df_result = f(df)
tm.assert_frame_equal(df_result, df_expected)
@pytest.mark.parametrize(
"f",
[
lambda x: (x.rolling(window=10, min_periods=5).cov(x, pairwise=True)),
lambda x: (x.rolling(window=10, min_periods=5).corr(x, pairwise=True)),
],
)
def test_moment_functions_zero_length_pairwise(f):
df1 = DataFrame()
df2 = DataFrame(columns=Index(["a"], name="foo"), index=Index([], name="bar"))
df2["a"] = df2["a"].astype("float64")
df1_expected = DataFrame(index=MultiIndex.from_product([df1.index, df1.columns]))
df2_expected = DataFrame(
index=MultiIndex.from_product([df2.index, df2.columns], names=["bar", "foo"]),
columns=Index(["a"], name="foo"),
dtype="float64",
)
df1_result = f(df1)
tm.assert_frame_equal(df1_result, df1_expected)
df2_result = f(df2)
tm.assert_frame_equal(df2_result, df2_expected)
class TestPairwise:
# GH 7738
@pytest.mark.parametrize("f", [lambda x: x.cov(), lambda x: x.corr()])
def test_no_flex(self, pairwise_frames, pairwise_target_frame, f):
# DataFrame methods (which do not call flex_binary_moment())
result = f(pairwise_frames)
tm.assert_index_equal(result.index, pairwise_frames.columns)
tm.assert_index_equal(result.columns, pairwise_frames.columns)
expected = f(pairwise_target_frame)
# since we have sorted the results
# we can only compare non-nans
result = result.dropna().values
expected = expected.dropna().values
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
@pytest.mark.parametrize(
"f",
[
lambda x: x.expanding().cov(pairwise=True),
lambda x: x.expanding().corr(pairwise=True),
lambda x: x.rolling(window=3).cov(pairwise=True),
lambda x: x.rolling(window=3).corr(pairwise=True),
lambda x: x.ewm(com=3).cov(pairwise=True),
lambda x: x.ewm(com=3).corr(pairwise=True),
],
)
def test_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f):
# DataFrame with itself, pairwise=True
# note that we may construct the 1st level of the MI
# in a non-monotonic way, so compare accordingly
result = f(pairwise_frames)
tm.assert_index_equal(
result.index.levels[0], pairwise_frames.index, check_names=False
)
tm.assert_index_equal(
safe_sort(result.index.levels[1]),
safe_sort(pairwise_frames.columns.unique()),
)
tm.assert_index_equal(result.columns, pairwise_frames.columns)
expected = f(pairwise_target_frame)
# since we have sorted the results
# we can only compare non-nans
result = result.dropna().values
expected = expected.dropna().values
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
@pytest.mark.parametrize(
"f",
[
lambda x: x.expanding().cov(pairwise=False),
lambda x: x.expanding().corr(pairwise=False),
lambda x: x.rolling(window=3).cov(pairwise=False),
lambda x: x.rolling(window=3).corr(pairwise=False),
lambda x: x.ewm(com=3).cov(pairwise=False),
lambda x: x.ewm(com=3).corr(pairwise=False),
],
)
def test_no_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f):
# DataFrame with itself, pairwise=False
result = f(pairwise_frames)
tm.assert_index_equal(result.index, pairwise_frames.index)
tm.assert_index_equal(result.columns, pairwise_frames.columns)
expected = f(pairwise_target_frame)
# since we have sorted the results
# we can only compare non-nans
result = result.dropna().values
expected = expected.dropna().values
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
@pytest.mark.parametrize(
"f",
[
lambda x, y: x.expanding().cov(y, pairwise=True),
lambda x, y: x.expanding().corr(y, pairwise=True),
lambda x, y: x.rolling(window=3).cov(y, pairwise=True),
# TODO: We're missing a flag somewhere in meson
pytest.param(
lambda x, y: x.rolling(window=3).corr(y, pairwise=True),
marks=pytest.mark.xfail(
not IS64, reason="Precision issues on 32 bit", strict=False
),
),
lambda x, y: x.ewm(com=3).cov(y, pairwise=True),
lambda x, y: x.ewm(com=3).corr(y, pairwise=True),
],
)
def test_pairwise_with_other(
self, pairwise_frames, pairwise_target_frame, pairwise_other_frame, f
):
# DataFrame with another DataFrame, pairwise=True
result = f(pairwise_frames, pairwise_other_frame)
tm.assert_index_equal(
result.index.levels[0], pairwise_frames.index, check_names=False
)
tm.assert_index_equal(
safe_sort(result.index.levels[1]),
safe_sort(pairwise_other_frame.columns.unique()),
)
expected = f(pairwise_target_frame, pairwise_other_frame)
# since we have sorted the results
# we can only compare non-nans
result = result.dropna().values
expected = expected.dropna().values
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
@pytest.mark.filterwarnings("ignore:RuntimeWarning")
@pytest.mark.parametrize(
"f",
[
lambda x, y: x.expanding().cov(y, pairwise=False),
lambda x, y: x.expanding().corr(y, pairwise=False),
lambda x, y: x.rolling(window=3).cov(y, pairwise=False),
lambda x, y: x.rolling(window=3).corr(y, pairwise=False),
lambda x, y: x.ewm(com=3).cov(y, pairwise=False),
lambda x, y: x.ewm(com=3).corr(y, pairwise=False),
],
)
def test_no_pairwise_with_other(self, pairwise_frames, pairwise_other_frame, f):
# DataFrame with another DataFrame, pairwise=False
result = (
f(pairwise_frames, pairwise_other_frame)
if pairwise_frames.columns.is_unique
else None
)
if result is not None:
# we can have int and str columns
expected_index = pairwise_frames.index.union(pairwise_other_frame.index)
expected_columns = pairwise_frames.columns.union(
pairwise_other_frame.columns
)
tm.assert_index_equal(result.index, expected_index)
tm.assert_index_equal(result.columns, expected_columns)
else:
with pytest.raises(ValueError, match="'arg1' columns are not unique"):
f(pairwise_frames, pairwise_other_frame)
with pytest.raises(ValueError, match="'arg2' columns are not unique"):
f(pairwise_other_frame, pairwise_frames)
@pytest.mark.parametrize(
"f",
[
lambda x, y: x.expanding().cov(y),
lambda x, y: x.expanding().corr(y),
lambda x, y: x.rolling(window=3).cov(y),
lambda x, y: x.rolling(window=3).corr(y),
lambda x, y: x.ewm(com=3).cov(y),
lambda x, y: x.ewm(com=3).corr(y),
],
)
def test_pairwise_with_series(self, pairwise_frames, pairwise_target_frame, f):
# DataFrame with a Series
result = f(pairwise_frames, Series([1, 1, 3, 8]))
tm.assert_index_equal(result.index, pairwise_frames.index)
tm.assert_index_equal(result.columns, pairwise_frames.columns)
expected = f(pairwise_target_frame, Series([1, 1, 3, 8]))
# since we have sorted the results
# we can only compare non-nans
result = result.dropna().values
expected = expected.dropna().values
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
result = f(Series([1, 1, 3, 8]), pairwise_frames)
tm.assert_index_equal(result.index, pairwise_frames.index)
tm.assert_index_equal(result.columns, pairwise_frames.columns)
expected = f(Series([1, 1, 3, 8]), pairwise_target_frame)
# since we have sorted the results
# we can only compare non-nans
result = result.dropna().values
expected = expected.dropna().values
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
def test_corr_freq_memory_error(self):
# GH 31789
s = Series(range(5), index=date_range("2020", periods=5))
result = s.rolling("12H").corr(s)
expected = Series([np.nan] * 5, index=date_range("2020", periods=5))
tm.assert_series_equal(result, expected)
def test_cov_mulittindex(self):
# GH 34440
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")])
index = range(3)
df = DataFrame(np.arange(24).reshape(3, 8), index=index, columns=columns)
result = df.ewm(alpha=0.1).cov()
index = MultiIndex.from_product([range(3), list("ab"), list("xy"), list("AB")])
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")])
expected = DataFrame(
np.vstack(
(
np.full((8, 8), np.nan),
np.full((8, 8), 32.000000),
np.full((8, 8), 63.881919),
)
),
index=index,
columns=columns,
)
tm.assert_frame_equal(result, expected)
def test_multindex_columns_pairwise_func(self):
# GH 21157
columns = MultiIndex.from_arrays([["M", "N"], ["P", "Q"]], names=["a", "b"])
df = DataFrame(np.ones((5, 2)), columns=columns)
result = df.rolling(3).corr()
expected = DataFrame(
np.nan,
index=MultiIndex.from_arrays(
[
np.repeat(np.arange(5, dtype=np.int64), 2),
["M", "N"] * 5,
["P", "Q"] * 5,
],
names=[None, "a", "b"],
),
columns=columns,
)
tm.assert_frame_equal(result, expected)